₁2次関数 $y = \overline{a(x-p)^2 + q oo j j j j oo j}$

頂点は(p,q)、軸は直線 x=p である。

次の2次関数の頂点と軸を求めよ。

(1)
$$y = x^2 + 5$$

(2)
$$y = -2x^2 + 7$$

$$(2) \quad y = -2x^2 + 7$$

(3)
$$y = (x-1)^2$$

(3)
$$y = (x-1)^2$$
 (4) $y = \frac{1}{2}(x+4)^2$

$$(5) \quad y = (x-1)^2 + 1$$

(5)
$$y=(x-1)^2+1$$
 (6) $y=\frac{1}{2}(x+4)^2+2$

(1)
$$y = x^2 - 4x$$

(2)
$$y = x^2 - 4x + 2$$
 (3) $y = x^2 - 4x - 3$

(3)
$$y = x^2 - 4x - 3$$

$$y = x^2 - 4x - 3$$

(1)
$$y = 2x^2 - 8x$$

(2)
$$y = 2x^2 - 8x + 2$$

(3)
$$y = 2x^2 - 8x - 1$$

$$(5) \quad y = -x^2 + 4x$$

(6)
$$y = -x^2 + 4x + 1$$

(7)
$$y = -x^2 + 4x + 3$$

(2) $y = x^2 - 2ax - a^2$

(1)
$$y=2x^2-6x$$
 (2) $y=2x^2-6x+2$

$$y = 2x^2 - 6x + 2$$

(6)
$$y = -3x^2 + 4x + 1$$

(3)
$$y = x^2 - 2(a+1)x + 2a^2 + b$$

(3)
$$y=2x^2-6x-1$$
 (4) $y=2x^2-6x+3$

(7)
$$y = -3x^2 + 4x + 3$$
 (8) $y = -3x^2 + 4x - 4$

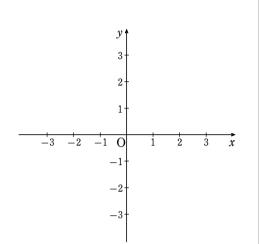
(5)
$$y = -3x^2 + 4x$$

⑤次の2次関数の頂点と軸を求めよ。

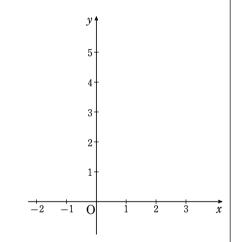
$$(1) \quad y = x^2 - 2ax$$

$$(4) \quad y = ax^2 + 4ax - a^2 + 3a$$

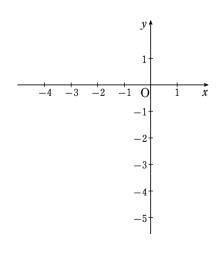
(1)
$$y = x^2 + 1$$



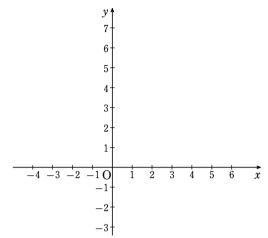
(2)
$$y = (x-2)^2$$



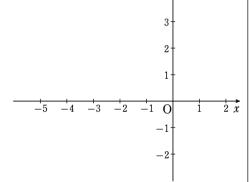
(3)
$$y = -2(x+2)^2 + 1$$



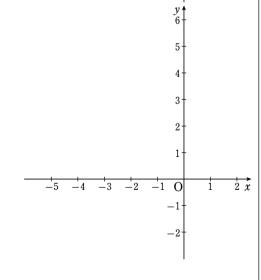
$$(4) \quad y = x^2 - 4x + 3$$



(5)
$$y = -x^2 - 2x + 1$$

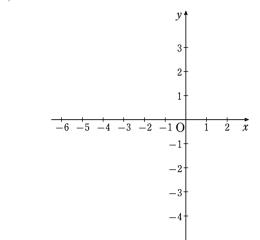


$$(5) \quad y = 2x^2 + 8x + 7$$

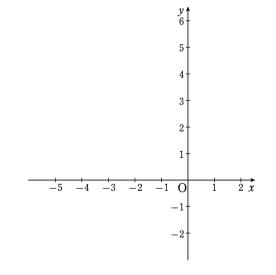


7次の2次関数の最大値または最小値、およびそのときのxの値を求めよ。

(1)
$$y = (x-1)(x+3)$$



(5)
$$y = -x(x+4)$$



$$(1) \quad y = x^2 + a$$

(4)
$$y=x^2-2(a+1)x+2a^2+b$$

(7)
$$y = -(x-a)^2 + a$$

(2)
$$y = 2(x-a)^2 + a - 3$$

(5)
$$y=2x^2-2ax-a^2+a$$

(8)
$$y = -2x^2 - 4ax + b$$

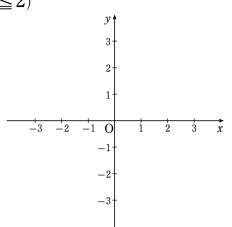
$$(3) \quad y = x^2 - 2ax$$

(6)
$$y = -x^2 + a^2 - a$$

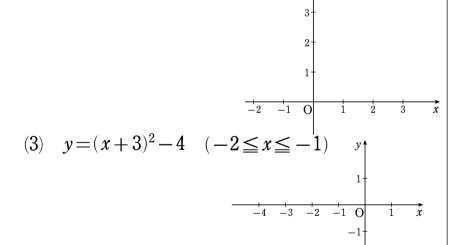
(9)
$$y = ax^2 + 4ax - a^2 + 3a$$

9次の2次関数の頂点を求め、最大値と最小値、およびそのときのxの値を求めよ。

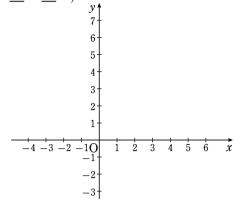
(1)
$$y = x^2 \quad (-1 \le x \le 2)$$



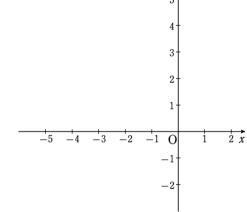
(2)
$$y = (x-1)^2 \quad (-1 \le x \le 2)$$



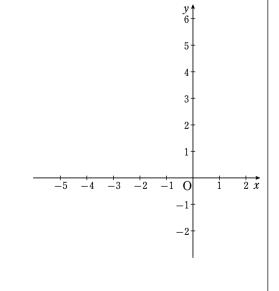
(4)
$$y = x^2 - 6x + 8$$
 $(1 \le x \le 4)$



(5)
$$y = -x^2 - 4x + 1 \quad (-2 \le x \le 0)$$



(5)
$$y = -x(x+4) \quad (-3 \le x \le 0)$$



10 次の 2 次関数の頂点の座標と最小値を求めよ。また、そのときの x の値も求めよ。

(1)
$$y=(x-1)^2+a$$
 $(-1 \le x \le 2)$

軸が定義域の(左外、中、右外)だから

(2)
$$y = (x-1)^2 + a \quad (-2 \le x \le 0)$$

軸が定義域の(左外、中、右外)だから

春期講習会	数学 I A大学入試応用	2次関数テキスト	1日目

)組() 釆	名前()
ノが且し	ノ笛	有別(,

(3) y = (x -	$(1)^2 + a$	$(2 \leq x \leq 3)$
--------------	-------------	---------------------

軸が定義域の(左外、中、右外)だから

最小値はx= のとき

(4) $y = (x-1)^2 + a$ $(a \le x \le a + 2)$

- ① 2 次関数 $y=2(x-a)^2+a-3$ $(-1 \le x \le 2)$ の頂点の座標と最小値を求めよ。また、そのときの x の値も求めよ。
- 12次の2次関数の頂点の座標と最大値を求めよ。また、そのときのxの値も求めよ。
 - (1) $y=(x-1)^2+a$ $(-1 \le x \le 2)$

軸が定義域の中点より(左側、右側)だから

最大値はx= のとき

(2) $y = (x-1)^2 + a$ $(0 \le x \le 3)$

軸が定義域の中点より(左側、右側)だから

のとき

最大値はx=

(3) $y = (x-1)^2 + a$ $(2 \le x \le 4)$

13 2 次関数 $y=2(x-a)^2+a-3$ $(-1 \le x \le 2)$ の頂点の座標と最大値を求めよ。また、そのときの x の値も求めよ。

 $(2) \quad -2x^2 + 2ax + a - 4 = 0$

軸が定義域の中点より(左側、右側)だから

最大値はx= のとき

(4) $y = (x-1)^2 + a$ $(a \le x \le a + 2)$

(3) $2x^2-2ax-(a-1)=0$

」 」 」 」 なの2次方程式が異なる2つの実数解をもつように 。 の範囲を求めよ。

(1) $x^2 - 2ax - 5a = 0$

」 次の2次関数の頂点を求めよ。また、x軸と異なる2点で交わるように aの範囲を求めよ。

(1)
$$y = x^2 - 2ax - 5a$$

- $_{16}$ 次の2次関数のグラフが、x軸と【 】の部分と異なる2点で交わるように a の範囲を求めよ。
 - $(1) \quad y = x^2 2ax 5a \qquad 【負の部分】$

(3) $y = x^2 - 2(a+1)x + 4$ $[1 \le x]$

(5) $y=x^2-2ax-5a$ 【正と負の部分】

(7) $y = -2x^2 + 2ax + a - 4$ 【正と負の部分】

 $(5) \quad (2x+1)^2 \ge 0$

 $(6) \quad (3x - 4)^2 \leq 0$

192次不等式 $ax^2+x+b>0$ の解が x<-3, 2< x であるとき, 定数 a, b の値を求めよ.

18次の2次不等式の解が、すべての実数であるとき、定数kの値の範囲を、それぞれ求めよ.

 $(1) \quad x^2 - kx + 1 > 0$

[17] 次の2次不等式を解け.

- $(1) \quad (x-1)(x-3) > 0$
- $(2) \quad (2x+3)(3x-2) < 0$

(2) $-x^2 + kx + k < 0$

② x の 2 次不等式 $ax^2 + bx + 8 > 0$ の解が -2 < x < 4 であるとき、定数 a、b の値を定めよ。

- $(3) (x-5)^2 > 0$
- $(4) \quad (4x+3)^2 < 0$

[21] 次の 2 次不等式を解け. ただし, a は定数とする.

(1) (x+2)(x-a) < 0

a は定数とする. 不等式 $x^2-4ax+3a^2<0$ を解け.

 $\begin{bmatrix} 5x-8>2x+1 \\ x+3\ge 3x-a \end{bmatrix}$ を満たす整数 x がちょうど 5 個存在するような定数 a の値の範囲は T T $\leq a$ T である。

② 2つの 2次不等式 $x^2-5x-6>0$, (x-1)(x-a)<0 を同時に満たす x の整数値がただ1 つだけ存在するとき,定数 a の値の範囲を求めよ.

(2) (x-2a)(x-a+1) > 0

②5 2 次不等式 $2x^2 - 7x + 6 < 0$ の解は r である。また,a > 0 であるとする。 2 次不等式 $x^2 + (2-a)x - 2a$ ≤ 0 の解は 1 である。これら 2 つの 2 次不等式 をともに満たす x が存在するような a の値の範囲は $^{\circ}$ である。

 $260 \le x \le 8$ のすべての x の値に対して,不等式 $x^2 - 2mx + m + 6 > 0$ が成り立つような定数 m の値の範囲を求めよ。